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Abstract: The energy density of the vacuum, Λ, is at least 60 orders of magnitude

smaller than several known contributions to it. Approaches to this problem are tightly

constrained by data ranging from elementary observations to precision experiments.

Absent overwhelming evidence to the contrary, dark energy can only be interpreted

as vacuum energy, so the venerable assumption that Λ = 0 conflicts with observation.

The possibility remains that Λ is fundamentally variable, though constant over large

spacetime regions. This can explain the observed value, but only in a theory satisfying

a number of restrictive kinematic and dynamical conditions. String theory offers a

concrete realization through its landscape of metastable vacua.
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1. Introduction: The cosmological constant problem

When Einstein wrote down the field equation for general relativity,

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν (1.1)

he had a choice: The cosmological constant Λ was not fixed by the structure of the

theory. There was no formal reason to set it to zero, and in fact, Einstein famously

tuned it to yield a static cosmological solution—his “greatest blunder”.

The universe has turned out not to be static, and Λ was henceforth assumed to

vanish. This was never particularly satisfying even from a classical perspective. The

situation is similar to a famous shortcoming of Newtonian gravity: Nothing prevents

us from equating the gravitational charge with inertial mass, but nothing forces us to

do so, either.

Any nonzero value of Λ introduces a length scale and time scale

rΛ = ctΛ =
√

3/|Λ| (1.2)

into Einstein’s theory. An independent, natural length scale arises from the constants

of nature: the Planck length1

lP =

√

G~

c3
≈ 1.616 × 10−33cm . (1.3)

Whether |Λ| vanishes or not, it has long been known empirically that it is very

small in Planck units (i.e., that rΛ is large in these natural units). The cosmological

constant strongly affects spacetime dynamics at all scales larger than rΛ and tΛ. But we

see general relativity operate on scales much larger than the Planck length, without any

sign of the cosmological constant. In fact, the smallness of Λ can be deduced just from

the fact that the universe is large compared to the Planck length, and old compared to

the Planck time.

First, consider the case of positive Λ. Assume, for the sake of argument, that no

matter is present (Tµν = 0). Then the only isotropic solution to Einstein’s equation is

de Sitter space, which exhibits a cosmological horizon of radius rΛ [1]. A cosmological

horizon is the largest observable distance scale, and the presence of matter will only

decrease the horizon radius [2]. We see scales that are large in Planck units (r ≫ 1),

and since rΛ must be even larger, Eq. (1.2) implies that the cosmological constant is

small.

1Here G denotes Newton’s constant and c is the speed of light. In this paper Planck units are used

unless other units are given explicitly. For example, tP = lP/c ≈ .539×10−43s and MP = 2.177×10−5g.
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Negative Λ causes the universe to recollapse independently of spatial curvature, on

a timescale tΛ [3]. The obvious fact that the universe is old compared to the Planck

time then implies that (−Λ) is small. Summarizing the above arguments, we find

−3t−2 . Λ . 3r−2 , (1.4)

where t and r are any time scale and any distance scale that have been observed.

These conclusions did not require cutting-edge experiments: knowing only that the

world is older than 5000 years and larger than Belgium would suffice to tell us that

|Λ| ≪ 1. For a tighter constraint, note that we can see out to distances of billions of

light years, so r > 1060; and stars are billions of years old, so t > 1060. With these

data, known for many decades, Eq. (1.4) implies roughly that

|Λ| . 3 × 10−120 . (1.5)

Hence Λ is very small indeed.

This result makes it tempting to set Λ = 0 in the Einstein equation and move on.

But Λ returns through the back door. The quantum fluctuations in the vacuum of the

standard model contribute to the expectation value of the stress tensor in a way that

mimics a cosmological constant. It is this effect that turns the cosmological constant

from a mere ambiguity into a genuine problem.

In quantum field theory, the vacuum is highly nontrivial. As a harmonic oscillator

in the ground state, every mode of every field contributes a zero point energy to the

energy density of the vacuum. In a path integral description, this energy arises from

virtual particle-antiparticle pairs, or “loops” (Fig. 1a). By Lorentz invariance, the

corresponding energy-momentum-stress tensor had better be proportional to the metric,

〈Tµν〉 = −ρvacuumgµν , (1.6)

which is confirmed by direct calculation.

Though it appears on the right hand side of Einstein’s equation, vacuum energy

has the form of a cosmological constant, and we might as well absorb it and redefine Λ

via

Λ = ΛEinstein + 8πρvacuum . (1.7)

Equivalently, we may absorb the “bare” cosmological constant appearing in Einstein’s

equation, ΛEinstein, into the energy density of the vacuum, defining

ρΛ ≡ ρvacuum +
ΛEinstein

8π
. (1.8)

Eqs. (1.2), (1.4), and (1.5) apply to the total cosmological constant, and can be restated
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graviton

(a) (b)

Figure 1: Some contributions to vacuum energy. (a) Virtual particle-antiparticle pairs

(loops) gravitate. The vacuum of the standard model abounds with such pairs and hence

should gravitate enormously. (b) Symmetry breaking in the early universe (e.g., of the chi-

ral and electroweak symmetries) shifts the vacuum energy by amounts dozens of orders of

magnitude larger than the observed value.

as an empirical bound on the total energy density of the vacuum:

|ρΛ| . 10−121 . (1.9)

But in the standard model, the energy of the vacuum receives many contributions

much larger than this bound. Their value depends on the energy scale up to which we

trust the theory but is enormous even with a conservative cutoff.

For example, consider the electron, which is well understood at least up to energies

of order M = 100 GeV [4]. Dimensional analysis implies that electron loops up to

this cutoff contribute of order (100 GeV)4 to the vacuum energy, or 10−68 in Planck

units. Similar contributions are expected from other fields. The real cutoff is probably

of order the supersymmetry breaking scale, giving at least (1 TeV)4 ≈ 10−64. It may

be as high as the Planck scale, which would yield |ρΛ| of order unity. Thus, quantum

field theory predicts |ρΛ| to be some 60 to 120 orders of magnitude larger than the

experimental bound, Eq. (1.5).

Additional contributions come from the potentials of scalar fields, such as the po-

tential giving rise to symmetry breaking in the electroweak theory (Fig. 1b). The

vacuum energy of the symmetric and the broken phase differ by approximately (200

GeV)4 ≈ 10−67. Any other symmetry breaking mechanisms at higher or lower en-

ergy, such as chiral symmetry breaking of QCD with (300 MeV)4 ≈ 10−79, will also

contribute.

I have exhibited various known contributions to the vacuum energy. They are

uncorrelated with one another and with the (unknown) bare cosmological constant

appearing in Einstein’s equation, ΛEinstein. Each contribution is dozens of orders of

magnitude larger than the empirical bound today, Eq. (1.5). In particular, the radiative
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correction terms from quantum fields are expected to be at least of order 10−64. They

come with different signs, but it would seem overwhelmingly unlikely for such large

terms to cancel to better than a part in 10120, in the present era.

This is the cosmological constant problem: Why is the vacuum energy today so

small? 2 It represents a serious crisis in physics: a discrepancy between theory and

experiment, of 60 to 120 orders of magnitude, in a quantity as basic as the weight of

empty space.

Outline In Sec. 2-4, I survey a number of general approaches to the cosmological

constant problem, without going into detailed theoretical models.3 Sections 5 and 6

discuss recent experimental and theoretical progress, and Sec. 7 closes with an outlook.

Many tempting ideas can be ruled out quite generally, because they conflict with

well-tested physics. In Sec. 2, I discuss a number of examples. Their failure modes

illustrate the difficulty of the problem and constitute useful litmus tests for new ap-

proaches. I emphasize the physical origin of basic obstructions, rather than the various

technical symptoms through which they manifest themselves in specific models.

In Sec. 3, I discuss an example of a class of ideas that predict that ρΛ = 0 today.

This strategy did seem viable once, but it never found a concrete theoretical realization,

and it is now quite disfavored experimentally.

In Sec. 4, I discuss the idea that ρΛ is a dynamical variable that can take on different

values in different, large parts of the universe. One can show that galaxies form only in

regions where ρΛ is not very much larger than the present matter density. Moreover,

it is reasonable to suppose that regions without galaxies do not contain any observers.

This combination of arguments, first formulated by Weinberg in 1987, predicts that we

should observe ρΛ ∼ ρmatter. The approach makes a number of theoretical predictions as

well, namely that its stringent kinematic and dynamical requirements could eventually

be accommodated in a realistic theory.

In Sec. 5 I argue that cosmological observations since 1998 have discriminated pow-

erfully between approaches to the cosmological constant problem. Weinberg’s predic-

2Recent observations have revealed the actual value of the cosmological constant: ρΛ ≈ 1.5×10−123.

This sharpens the issue, but it does not change the fact that a much larger value is predicted. I will

focus first on the question of why ρΛ is not large, before considering the implications of its precise

value (Sec. 5).
3I will not attempt a thorough survey of the literature. A classic review is Ref. [5]. Ref. [6] is

comprehensive and includes the discovery of nonzero ρΛ. For a particularly clear recent discussion

that includes the string landscape, see Ref. [4]. This article is based on lectures at the Theoretical

Advanced Study Institute, at the University of Colorado, Boulder, in May/June of 2007, and is being

published under the title “The Cosmological Constant” in a special issue on dark energy in the journal

General Relativity and Gravitation; some material has appeared earlier in Ref. [7].
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tion was borne out by the observation of phenomena such as the accelerated expansion

and spatial flatness of the universe, which are incompatible with ρΛ = 0 and favor a

value ρΛ ≈ 3.2 ρmatter.

Theory, too, has come down on Weinberg’s side. In Sec. 6, I describe a theory of

the cosmological constant. It satisfies the theoretical requirements of his approach, and

it arises naturally in string theory.

String theory was not invented for the purpose, and it is a rather rigid framework.

It is all the more remarkable that some of its most characteristic features, such as extra

dimensions and branes, have allowed it to address the cosmological constant problem.

They give string theory the vacuum structure of a multidimensional potential land-

scape. What we call “the” vacuum is but one of perhaps 10500 long-lived, metastable

vacua, arising from the combinatorics of branes wrapping handles in compact, extra

dimensions. Our “big bang” was actually the decay of a more energetic vacuum. And

our own vacuum, too, will decay.

The landscape of string theory opens new fields of inquiry, a few of which I sketch

in Sec. 7. Vacuum energy aside, field content, masses, and couplings are all expected

to vary from vacuum to vacuum. This raises questions of predictivity. The existence

of a multitude of metastable solutions is an essential feature of any theory describing

our world, such as the standard model. Effective or statistical descriptions have proven

very powerful, and we must learn to develop analogous methods for string theory. This

is complicated by the fact that in a gravitational theory, false vacua grow faster than

they decay, producing infinite volumes. A cosmological measure or cutoff is needed in

order to compute relative probabilities of different vacua.

2. Some ideas, and why they don’t work

A discrepancy by a factor of 1060 is impressive but, given no other information, might

be shrugged off as just another hierarchy problem. However, the cosmological constant

problem is far more severe. In order to appreciate its unique features and extraordinary

difficulty, it is instructive to consider a few approaches that might come to mind, and

to exhibit some of the obstructions they face. (My emphasis on the physical origin of

these obstructions, rather than their technical manifestations, is inspired by a similar

viewpoint compellingly advocated in Polchinski’s review [4].)

In this and the following sections, I will only consider experimental constraints

that have long been known. I will not use results from recent precision cosmological

experiments, such as the 1998 discovery of accelerated expansion. Their impact will be

considered in Sec. 5.
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2.1 Quantum gravity

Fundamentally, the problem amounts to a clash between particle physics, which sources

vacuum energy through quantum effects, and gravity, which responds to it classically.

To describe this situation accurately, perhaps we need quantum gravity, which we do

not understand well enough. So we cannot trust the above arguments.

But it is not so easy to sweep the cosmological constant problem under the rug of

our ignorance. All matter is quantum mechanical. Yet, its large scale gravitational in-

teractions are accurately described by feeding the expectation value of the stress tensor

into classical general relativity. A quantum theory of gravity, like any other extension

of our theoretical framework, may help with the cosmological constant problem—string

theory certainly does—but it cannot do so merely by failing to reproduce semi-classical

gravity in the appropriate limit.

Quantum gravity would be needed to describe loop momenta exceeding 1019 GeV,

or curvature radii smaller than 10−33 cm. To exhibit the cosmological constant problem

it is not necessary to appeal to such extreme regimes; it arises well inside the regime of

validity of both gravity and quantum field theory. For example, by Eq. (1.2), electron

loops with momenta up to just 1 MeV alone should curl up the universe to about a

million kilometers—a small world, but well described by general relativity.

2.2 Infrared or ultraviolet modifications of gravity

This last example makes it clear that classical modifications of gravity are of no ap-

parent use either. We can only modify the theory on scales where it has not been

tested. But the above example falls into a regime where gravity is well constrained

experimentally.

More generally, short-distance modifications are irrelevant since the smallness of

the cosmological constant manifests itself through the large size of the universe. The

universe is much larger than the smallest distance scale at which gravity has been tested

(fractions of a millimeter). At intermediate scales, we can trust general relativity, and

we know that it would have responded to the large vacuum energy predicted by the

standard model. So we can be sure that the vacuum energy is really unnaturally small,

or zero.

Long-distance (infrared) modifications are unhelpful because we know that the

universe started out small, and the cosmological constant problem is the prediction

that the horizon should have never become larger than Planck size generically, or at

most 100 µm in some models. This would have been a true event horizon, so causality

would have prevented larger scales from playing any dynamical role. In particular, a
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modification of gravity on the present horizon scale would never have come into play.4

In summary, the shortest and longest distances are precisely the ones that play no

essential role in the cosmological constant problem. We know that vacuum energy is

unnaturally small (ρΛ ≪ 10−60), assuming only that general relativity is valid on at

least one intermediate scale between 100 µm and 1 Gpc. This includes broad regimes

where we know that general relativity is very accurate and experimental constraints

prevent us from modifying it.

2.3 Violations of the equivalence principle and de-gravitating the vacuum

Perhaps general relativity can be modified selectively, so that only vacuum fluctuations

do not couple to gravity? Empirically we know that virtual particles contribute to

the inertial mass, for example through the Lamb shift. But perhaps the equivalence

principle is violated, and they do not contribute to the gravitational mass?

In fact, free fall experiments show that virtual particles do gravitate in matter,

satisfying the equivalence principle at least to 1 part in a million [4]. The only remaining

possibility, then, is to arrange that they gravitate in matter, but not in the vacuum.

Ref. [4] contains a careful discussion of the difficulties of this approach, which I will

not repeat here.

2.4 Initial conditions

Another tempting rug under which to sweep the cosmological constant problem is the

beginning of the universe. Singularity theorems suggest that classical spacetime had a

beginning. If so, there should be a theory of initial conditions. Perhaps it determines

that the universe must start out with zero vacuum energy?

In fact, this would be a disaster. As discussed earlier, the energy of the vacuum

dropped sharply during various known phase transitions in the early universe. If the

universe had started with ρΛ = 0, the vacuum energy would have decreased to −10−67

at the electroweak phase transition, leading to a big crunch. The universe would have

ended when it was only 10−10 seconds old.

This argument could also be used against the idea that a dynamical mechanism

attracted ρΛ to 0 in the early universe. But attractor mechanisms are already ruled

out by more general arguments, which I will turn to next.

4This problem affects any approach in which the present horizon size, or some other large scale,

appears directly as input. This is inevitably circular, since the smallness of the cosmological constant

is a necessary condition for the largeness of the universe. If we start by assuming its largeness, there

is nothing left to explain.
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2.5 Nongravitational dynamical attractor mechanisms

Perhaps there is a local dynamical mechanism that allowed the standard model to adjust

coupling constants, masses, and/or effective potentials, until their various contributions

to the vacuum energy cancelled out? But nongravitational physics depends only on

energy differences, so the standard model cannot respond to the actual value of the

cosmological constant it sources. This implies that ρΛ = 0 is not a special value from

the particle physics point of view. In particular, it cannot be a dynamical attractor in

a nongravitational theory.

2.6 Gravitational dynamical attractor mechanisms

Gravity can see the cosmological constant, and among vacuum solutions of Einstein’s

equation, Minkowski space (ρΛ = 0) certainly is special for having no curvature. Per-

haps, then, a dynamical mechanism operated in the past, which attracted ρΛ to zero

through gravitational interactions?

The catch with this idea is that the universe is not vacuous. Today’s cosmological

constant was dynamically irrelevant in the early universe. This is one of the greatest

difficulties in solving the cosmological constant problem, and it is frequently overlooked.

A mechanism that works only in an empty universe solves nobody’s problem.

It is worth going over this point in more detail. Gravity couples to the stress tensor,

and vacuum energy is only one of many contributions to the stress tensor. Today, the

energy density of the vacuum is comparable to the average density of matter, and its

pressure is 104 times greater than that of radiation. But while matter and radiation red-

shift under expansion, vacuum energy does not dilute. Until the recent past, therefore,

a vacuum energy density of 10−120 would have constituted a negligible contribution to

the stress tensor. Gravity was responding to much larger energies and pressures. The

notion of a gravitational feedback mechanism adjusting the cosmological constant to

precision 10−120 in the early universe can be roughly compared to an airplane following

a prescribed flight path to atomic precision, in a storm.

Consider, for example, the era of nucleosynthesis, at a temperature of 1 MeV.

The energy density of radiation was ρBBN = 1.6 × 10−88 and its pressure was pBBN =

0.53 × 10−88. Hence, no dynamical mechanism could have adjusted the vacuum en-

ergy to precision better than δρΛ ≈ 10−88 prior to nucleosynthesis. This exceeds the

conservative upper bound of Eq. (1.5) by a factor of 1033.

This problem can be restated in a geometric language. Spacetime geometry is the

only physical entity that can be affected by vacuum energy, but it need not be, because

other forms of energy might curve it more. At nucleosynthesis, the curvature scale was

H−1
BBN ≈ 3×1043. Any cosmological constant much smaller than 3H2

BBN/8π would have
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left this geometry unaffected, so no imprint could have distinguished, say, ρΛ = 10−90

from ρΛ = 10−123 at that time, and nothing could have selected for the latter.

One may speculate that a dynamical mechanism was operating continuously, keep-

ing the vacuum energy density comparable to the density of matter or radiation at all

times. But this is impossible. The cosmological dilution of a perfect fluid is completely

determined by the conservation of the stress tensor (and thus, in particular, by general

relativity). Its density must redshift as ρ = a−3(1+w), where a is the scale factor and

p = wρ is the pressure. Hence, vacuum energy, or anything behaving like it (w ≈ −1)

cannot continuously dilute in sync with matter (w = 0) or radiation (w = 1/3). For an

analysis ruling out the continuous transfer of vacuum energy into matter or radiation,

see Ref. [5].

2.7 Summary

I make no claim to have represented all approaches one might try, nor have I identified

all of their problems. In order to focus on general constraints, I have granted various

optimistic assumptions and ignored technical gaps in several of the ideas considered.

The obstructions listed here are powerful, but since some solution must exist, they

cannot be insurmountable. It is best to think of them as litmus tests. A serious proposal

should be able to state precisely how it satisfies each constraint. We have innumerable

“solutions” that work in a world without matter and radiation, are spoiled by symmetry

breaking in the early universe, or appeal exclusively to quantum gravity effects. They

fail to confront the main difficulties of the problem.

3. An old idea that might have worked but didn’t

The entire discussion so far could have been written in 1980. The cosmological constant

problem—that ρΛ is much smaller than predicted—was well known then. What was not

known is whether the cosmological constant is strictly zero or just very small, but either

way there was a crisis. Undoubtedly, all of the above ideas were already considered

then, and were dismissed, since their flaws are fatal quite independently of the precise

value of ρΛ.5

In this section I will discuss a strategy that would have been viable in 1980 but

has since become unattractive. In order to give the idea a fair hearing, let us ignore for

a moment the 1998 discovery of a nonzero cosmological constant. We know only that

|ρΛ| . 10−121, and we would like to understand why.

5Happily, this seems not to stand in the way of their continued, enthusiastic rediscovery.
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3.1 ρΛ vanishes in the asymptotic future

Except in the case of attractor behavior, the state of a dynamical system cannot be

determined from its equations of motion alone; one needs some knowledge of bound-

ary conditions. But from Sec. 2 we already know that neither initial conditions, nor

attractor behavior in the early universe, are likely to solve the problem.

However, final conditions might work. In the absence of a reliable theory of either

initial or final conditions, it is legitimate to speculate that the boundary conditions

on the universe are most naturally formulated in the asymptotic future, and that they

dictate that ρΛ = 0 in the late time limit. (The final conditions might also set ρΛ to a

small nonzero value, but this is less attractive, since it introduces an arbitary scale.6)

What does this imply for the cosmological constant today? All known effective

scalars are presently in their vacuum. One can hypothesize additional scalars that are

not (such as quintessence), but this is quite difficult to implement without significant

fine-tuning, and in any case constitutes a complication of the model. In any natural

implementation of our idea, therefore, there will be no difference between the vacuum

energy today and the vacuum energy in the infinite future, ρΛ = 0.

3.2 Predictions

Thus, the final-condition approach generically predicts that there is no vacuum energy

in the present era. This prediction has been falsified. Experiments began to show

around 1998 that the vacuum energy is positive and of order 10−123 (see Sec. 5).

The final-condition approach makes a second prediction, which should not be over-

looked just because it is theoretical. I made two very strong assumptions:

1. The boundary conditions of the universe are set in the far future.

2. They require ρΛ = 0.

If the idea is right, these assumptions should eventually be vindicated by progress in

our understanding of fundamental theory.

To date, at least, this has not happened. Another way to say this is to note that

since the time when many theorists began worrying seriously about the cosmological

constant problem (the 1980s at the latest), we have not succeeded in making this

6A nonzero value, no matter how small, might even spoil the idea. Negative ρΛ leads to a big crunch

with high energy densities and perhaps also the restoration of some broken symmetries. Setting |ρΛ|
to a small value at the big crunch thus faces one or more of the problems that frustrated attempts

to fix it in the early universe. Positive ρΛ at t = ∞ implies an eternal de Sitter universe. Under

plausible assumptions, our observation of a universe with a long semiclassical history is ruled out in

such a cosmology [8]; see, however, Ref. [9].
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idea any more precise, or in showing that it can actually be realized in a plausible

context such as string theory. In summary, the experimental developments of recent

decades strongly disfavor this approach, while theoretical developments have failed to

corroborate it.

But in fact, the same can be said for other approaches that predicted that the energy

of the vacuum should vanish in the present era. In several decades of theoretical work,

we have not identified any concrete reason why it should; and since 1998 we know that

it does not.

4. An old idea that could have been falsified but wasn’t

I will now consider a different strategy, various versions of which were suggested

throughout the 1980s. Its initial status was very similar to the previous strategy:

It made an experimental prediction for ρΛ, and it optimistically anticipated that theo-

retical progress would eventually justify a number of implicit assumptions. Unlike the

previous strategy, however, this one has since found support on both counts.

4.1 ρΛ is an environmental variable

The strategy [10–14] is to posit that the universe is much larger than its presently

visible portion, and that ρΛ varies from place to place, though it can be constant over

very large distances. According to Weinberg [14] (see also Refs. [15,16]), structure such

as galaxies will only form in locations where

−10−123 . ρΛ . 3 × 10−121 . (4.1)

Assuming that structure is a prerequisite for the existence of observers, we should then

not be surprised to find ourselves in such a region.

Why is ρΛ related to structure formation? To form galaxies and clusters, the tiny

density perturbations visible in the cosmic microwave background radiation had to

grow under their own gravity, until they became nonlinear and decoupled from the

cosmological expansion. This growth is logarithmic during radiation domination, and

linear in the scale factor during matter domination.

Vacuum energy does not get diluted, so it inevitably comes to dominate the dy-

namics of the universe, at a time of order tΛ ∼ |ρΛ|−1/2. If ρΛ > 0, small perturbations

will cease to grow at this time. The only structures that will remain are highly over-

dense regions that have already become gravitationally bound and decoupled from the

cosmological expansion.

This means that there would be no structure in the universe if the cosmological

constant had been large enough to dominate the energy density before the first galaxies
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formed [14], tens or hundreds of millions of years after the big bang. Careful analysis

then leads to the upper bound in Eq. (4.1).7 The lower bound comes about because

the universe would have already recollapsed into a big crunch if (−ρΛ) had been larger

than the matter density today [5, 16].

Note that Weinberg’s point was not to improve the experimental upper bound on

ρΛ but to explain its smallness. In fact, the limits on ρΛ from galaxy formation are more

lenient than bounds derived from other data available at the time, such as constraints

on the expansion rate and flatness of the universe. But those data were not in any

obvious way required for the existence of observers, so they could not have been used

in an anthropic argument.

4.2 Experimental Predictions

If it is true that all observers live in regions satisfying Eq. (4.1), then it is obvious why

we do not observe a value of |ρΛ| greater than 10−120. But what do we expect to see?

We assumed that many different values of ρΛ are possible, but this does not mean

they are all equally likely. However, Eq. (4.1) represents an exceedingly small interval

compared with the natural scale of ρΛ (the latter being unity, or in any case not

less than 10−60). It is plausible that the likelihood of different values of ρΛ should

not vary significantly over such a tiny interval. (You may think that a divergence at

ρΛ = 0 is possible, since 0 looks like a special value, but I argued earlier that it is not.)

Technically, this means that we should consider a “flat” prior probability for values in

Eq. (4.1):

dp/dρΛ ≈ const. (4.2)

Then it would be surprising if we should find ourselves in a region with, say, ρΛ =

10−150. This would not be a typical value; it would be much smaller than necessary

for observers, an unlikely accident. It is far more likely that the local cosmological

constant has a typical value in the range compatible with structure formation, which

by Eqs. (4.1) and (4.2) is of order 10−121.

Therefore, the “environmental” approach predicts [14] that the vacuum energy

should be nonzero and not much smaller than 10−121. In other words, its magnitude

should be comparable to, or somewhat larger than, the present matter density, ρmatter ≈
4.6 × 10−124. But this means that it should be detectable by careful experiments.

7Since this argument was first proposed, dwarf galaxies have been discovered at higher redshift.

This raises the upper bound on ρΛ obtained by Weinberg’s argument, and it can make the observed

value seem surprisingly small (though by a factor of 10−3, still much better than 10−123). This

discrepancy may grow if parameters other than Λ can also to vary. Its magnitude, however, depends

on the manner in which the divergent numbers of observers living in different parts of the universe are

regulated and compared. The discrepancy is entirely absent in one natural proposal (see Sec. 7).
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Weinberg’s prediction was confirmed in 1998, when it was discovered that ρΛ ≈
1.5 × 10−123. I discuss this development further in Sec. 5.

4.3 Theoretical Predictions

The environmental strategy makes several highly nontrivial assumptions:

1. ρΛ is fundamentally not fixed but variable.

2. Its possible values are continuous, or are sufficiently closely spaced that Eq. (4.1)

is satisfied by at least one of them.

3. (a) Either, boundary conditions ensure that ρΛ will satisfy Eq. (4.1) in the

present epoch.

(b) Or, starting from generic initial conditions, many other values are eventually

realized in different spacetime regions by some dynamical mechanism. In

particular, at least one value of ρΛ satisfying Eq. (4.1) can be dynamically

attained somewhere.

4. Regions satisfying Eq. (4.1) can grow larger than the entire observable universe,

and can survive for longer than 13 billion of years.

5. Such regions can contain matter and radiation.

Thus, the credibility of the environmental approach rested not only on its (successful)

experimental prediction. It also depended on the ability of future theoretical develop-

ments to provide a justification for each of the assumptions involved.

These theoretical predictions are not trivial. It was far from clear whether they

could be satisfied and explained by a concrete model, even at the level of effective field

theory. To see how hard it is, it helps to consider one of the constructions that came

closest (see Sec. 6.1).

String theory is particularly rigid in restricting the ingredients it allows us to work

with. It might have seemed overwhelmingly unlikely, therefore, that string theory

should fit snugly into the complicated mold of constraints described above—constraints

that even less fundamental, more flexible frameworks seemed unable to conform to.

Yet, we now have strong evidence that string theory succeeds at this task. The solu-

tion, the gist of which I will describe in Sections 6.2 and 6.3, depends crucially on some

of string theory’s most characteristic, defining elements, such as the existence of extra

dimensions and of higher-dimensional objects (branes). This development is perhaps

no less remarkable than the experimental confirmation of Weinberg’s prediction.
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5. Why dark energy is a cosmological constant

We now know that the cosmological constant is not zero. This was discovered in 1998

by measuring the apparent luminosity of distant supernovae [17, 18]. Their dimness

indicates that the expansion of the universe has recently begun to accelerate, consistent

with a positive cosmological constant [19]

ρΛ = (1.48 ± 0.11) × 10−123 , (5.1)

and inconsistent with ρΛ = 0. Cross-checks have corroborated this conclusion. For

example, the above value of ρΛ also explains the observed spatial flatness of the universe,

which cannot be accounted for by baryonic and dark matter alone. (See Ref. [19] for a

recent summary of constraints from various experiments.)

What does this observation imply for the cosmological constant problem? It neither

creates it nor solves it. But it sharpens it, and so discriminates powerfully between

approaches to its solution. The fact that 0 6= ρΛ ≈ 3.2 ρmatter disfavors theories that

leads to vanishing ρΛ, and it favors any theory that predicts ρΛ to be comparable to

the present matter density.

5.1 Calling it a duck

I have failed to describe the recent discovery in tones of wonder and stupefaction, as a

“mysterious dark energy”, a nonclustering fluid, with equation of state w = pDE/ρDE

close to −1, which currently makes up 75% of the energy density of the universe. Why

obfuscate? If a poet sees something that walks like a duck and swims like a duck and

quacks like a duck, we will forgive him for entertaining more fanciful possibilities. It

could be a unicorn in a duck suit—who’s to say! But we know that more likely, it’s a

duck.

In science, it can be wrong to keep an open mind, and the expression “dark en-

ergy” is an example of misplaced political correctness. Dark energy is the cosmological

constant until proven otherwise, for the same reason that the moon is not made of

cheese until proven otherwise: It is by far the most economical interpretation of the

data, even if it fails to sustain a fondly held preconception—in this case, the prejudice

that ρΛ = 0.

Let me make this completely explicit. A conservative, well-tested framework, the

standard model coupled to general relativity, has encountered a problem: Why is ρΛ

much smaller than several known contributions to it? No proposal for its resolution

can claim a solid footing.8 If experiment, rather than theoretical bias, is to be our

8I will argue in the next section that this is no longer entirely true. Still, none is on a footing

comparable to the standard model or general relativity.
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guide, then we must remain agnostic as to how the cosmological constant problem will

be solved.

Thus, ρΛ remains an unexplained parameter that we must fit to the data until

help arrives. Dark energy is experimentally indistinguishable from vacuum energy, but

definitely distinct from any other known form of matter. It is reasonable, then, to

consider dark energy to be vacuum energy, and to fit ρΛ to its observed density.

Thus, Eq. (5.1) is a straightforward, unbiased interpretation of dark energy. With-

out interposing theoretical speculations, we have allowed experiment to determine pre-

cisely which problem physics (properly defined to include only well-established and

tested theories) actually faces: Why is ρΛ much smaller than many known contribu-

tions to it, and why is it comparable to the energy density of matter today?

Only now may we turn to the realm of speculation, and ask how the problem might

be resolved. It behooves us to use experiment to evaluate our hypotheses, not the other

way around. Among hypotheses that made specific predictions for the value of ρΛ, we

may safely conclude that some (Sec. 4) are favored by the discovery of nonzero ρΛ, and

others (Sec. 3) are disfavored.

5.2 Two problems for the price of one

In order to motivate a different interpretation of “dark energy”, we would need to turn

the scientific method on its head, and begin by decreeing that the cosmological constant

problem will one day be resolved by a theory that sets ρΛ = 0 precisely. We would have

to treat this claim not as a hypothesis among others, to be judged against empirical

evidence, but as a dogma that constrains our interpretation of any observation.

As theoretical bets go, this one is daring: No concrete, viable theory predicting

ρΛ = 0 was known by 1998, and none has been found since. By contrast, we do have

a concrete implementation of Weinberg’s approach, which predicts ρΛ ∼ ρmatter. But

this will be the topic of Sec. 6.

Here, my argument is not about which bet we should make. We should not be

betting at all. By looking at the world through the lens of just one hypothesis, we

prevent experiment from discriminating between it and other hypotheses, depriving

ourselves of the fruits of considerable labor.

To make matters worse, the assumption that ρΛ = 0 is not just pure speculation.

It is pure speculation that turns one problem into two:

1. Why is ρΛ = 0?9 (This is the old cosmological constant problem of Sec. 1, made

more specific not by experiment but by our decree that ρΛ = 0.)
9This problem is sometimes overlooked, as if ρΛ = 0 required no explanation [20]—a potentially

expensive fallacy that greatly exaggerates the plausibility of time-dependent dark energy. It creates

false expectations and may distort our assessment of important future experiments.
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2. If, by our decree, dark energy is not vacuum energy, then it must be something

else—but something that looks and acts, in every respect so far observed, just

like vacuum energy, and unlike any other known substance. What could it be?

The two problems have very different origins. The cosmological constant problem, at

least in its original form, is real, in that it arises within well-tested physics. The dark

energy problem is an artifact produced by insisting on the untested hypothesis that

ρΛ = 0.

On the upside, much progress is being made on the second problem (if we count

fine-tuned scalar fields and ad hoc modifications of gravity10). Ironically, the very obser-

vations that have finally provided a clue about the cosmological constant problem—and

which, for that reason alone, would rank among the great triumphs of experimental

science—seem to have diverted our attention to the entirely fictitious problem of dark

energy.

5.3 The real second problem

By sharpening the cosmological constant problem, the discovery of nonzero vacuum

energy did create a new challenge, sometimes called the coincidence problem or why-

now problem. Vacuum energy, or anything behaving like it (which includes all options

still allowed by current data) does not redshift like matter. In the past, vacuum energy

was negligible, and in the far future, matter will be very dilute and vacuum energy

will dominate completely. The two can be comparable only in a particular epoch. It is

intriguing that this is the same epoch in which we are making the observation.

Note that this apparent coincidence involves us, the observers, in an essential way.

If it has any explanation, it will by definition have to be an anthropic explanation.

In fact, Weinberg’s approach (Sec. 4) explained the coincidence before it was dis-

covered. It predicts that vacuum energy will be just small enough to allow galaxies

to form, which implies that in the epoch immediately following galaxy formation it

will be comparable to the matter density. This explains the coincidence if one assumes

not only that observers require galaxies, but also that typical observers form not too

long after galaxies do. (Both assumptions seem to hold in our universe, but in the

context of the string landscape their general validity could be debated. At the end of

Sec. 7, I will discuss a natural measure on the multiverse that renders both assumptions

unnecessary, explaining the coincidence more directly and more generally.)

10Infrared modifications of gravity do not solve the cosmological constant problem (see Sec. 2), but

given enough small parameters, they can mimic dark energy.
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6. A theory of the cosmological constant

In this section I review a theory of the cosmological constant that realizes the general

idea of Sec. 4. It satisfies all five constraints identified in Sec. 4.3, and it arises naturally

in string theory.

I will begin in Sec. 6.1 by reviewing an older idea. The model does not succeed, but

it presents a natural starting point for the discussion of a more powerful mechanism in

Sec. 6.2. In Sec. 6.3, I argue that this construction arises naturally in string theory.

6.1 The Brown-Teitelboim mechanism

In this subsection, I will discuss an influential construction by Brown and Teitel-

boim [21, 22] that anticipated a number of features of the landscape of string theory.

It will turn out to satisfy a subset of the conditions (1)-(5) of Sec. 4.3, bringing the

remaining challenges into sharp profile.

Discretely adjustable vacuum energy from a four-form field Extending an

idea of Abbott [23], Brown and Teitelboim [21,22] introduced a four-form field to make

the cosmological constant variable (condition 1). An analogy with electromagnetism

helps clarify its role.

The Maxwell field, Fab, is derived from a potential, Fab = ∂aAb − ∂bAa. The

potential is sourced by a point particle through a term
∫

eA in the action, where the

integral is over the worldline of the particle, and e is the charge. Technically, F is a

two-form (a totally antisymmetric tensor of rank 2), and A is a one-form coupling to

a one-dimensional worldvolume (the worldline of the electron).

The field content of string theory and supergravity is completely determined by

the structure of the theory. It includes a four-form field, Fabcd, which derives from a

three-form potential:

Fabcd = ∂[aAbcd] , (6.1)

where square brackets denote total antisymmetrization. This potential naturally cou-

ples to a two-dimensional object, a membrane, through a term
∫

qA, where the integral

runs over the 2+1 dimensional membrane worldvolume, and q is the membrane charge.

The properties of the four-form field in our 3+1 dimensional world mirror the

behavior of Maxwell theory in a 1+1 dimensional system. Consider, for example, an

electric field between two parallel capacitor plates of equal and opposite charge. If the

plates are very large, then the field strength in the interior is constant both in space

and time. Its magnitude depends on how many electrons the negative plate contains;

thus it will be an integer multiple of the electron charge: E = ne.
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The energy density will be one half of the field strength squared:

ρ =
FabF

ab

2
=

n2e2

2
(6.2)

In order to treat this as a system with only one spatial dimension, I have integrated

over the directions transverse to the field lines, so ρ is energy per unit length. The

pressure is equal to −ρ. The corresponding 1+1 dimensional stress tensor has the

form of Eq. (1.6), so the electromagnetic stress tensor acts like vacuum energy in 1+1

dimensions.

The same is true for the four-form in our 3+1 dimensional world. First of all, the

equation of motion in the absence of sources is ∂a(
√−gF abcd) = 0, with solution [24,25]

F abcd = cǫabcd , (6.3)

where ǫ is the unit totally anti-symmetric tensor and c is an arbitrary constant. In string

theory, there are “magnetic” charges (technically, five-branes) dual to the “electric

charges” (the membranes) sourcing the four-form field. Then, by an analogue of Dirac

quantization of the electric charge, one can show that c is quantized in integer multiples

of the membrane charge, q:

c = nq . (6.4)

Note that the actual value of the four-form field is thus quantized, not only the difference

between possible values [26].

The four-form field strength squares to FabcdF
abcd = 24c2, and the stress tensor is

proportional to the metric, with

ρ =
1

2 × 4!
FabcdF

abcd =
n2q2

2
(6.5)

In summary, the four-form field is nondynamical, and it contributes n2q2/2 to the

vacuum energy. It is thus indistinguishable from a contribution to the cosmological

constant.

Dynamics Classically, the field configurations we studied have no dynamics, but

quantum mechanically, they are unstable to nonperturbative tunneling effects. This is

readily apparent in the electromagnetic, 1+1 dimensional analogy. The electric field

between the plates will be slowly discharged by Schwinger pair creation of field sources.

This is a process by which a electron and a positron tunnel out of the vacuum. Since field

lines from the plates can now end on these particles, the electric field between the two

particles will be lower by one unit [ne → (n−1)e]. The particles will appear precisely at

such a separation that the corresponding decrease in field energy compensates for their
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combined rest mass. They are then subjected to constant acceleration by the electric

field until they hit the plates. If the plates are far away, they will move practically at

the speed of light by that time.

For weak fields, this tunneling process is exponentially suppressed, with a rate of

order exp(−πm2/ne2), where the exponent arises as the action of a Euclidean-time

solution describing the appearance of the particles. Thus, a long time passes between

creation events. However, over large enough time scales, the electric field will decrease

by discrete steps of size e. Correspondingly, the 1+1 dimensional “vacuum energy”,

i.e., the energy per unit length in the electric field, will gradually decrease by discrete

amounts [n2e2 − (n − 1)2e2]/2 = (n − 1
2
)e2. Note that this step size depends both

on the electric charge, e, and on the remaining flux, n. The cascade of decays will

only terminate once the electric field has been depleted to the point where not enough

energy is left for the creation of another electron-positron pair.

Precisely analogous nonperturbative effects occur for the four-form field in 3+1

dimensions. By an analogue of the Schwinger process, spherical membranes can spon-

taneously appear. (This is the correct analogue: the two particles above form a zero-

sphere, i.e., two points; the membrane forms a two-sphere.) Inside this source, the four-

form field strength will be lower by one unit of the membrane charge [nq → (n − 1)q].

The process conserves energy: the initial membrane size is such that the membrane

mass is balanced against the decreased energy of the four-form field inside the mem-

brane. The membrane quickly grows to convert more space to the lower energy density,

accelerating outward and expanding asymptotically at the speed of light.

Membrane creation is a well-understood process described by a Euclidean instan-

ton, and like Schwinger pair creation, is generically exponentially slow. Ultimately,

however, it will lead to the step-by-step decay of the four-form field. Inside a new

membrane, the vacuum energy will be lower by11

δΛ = (n − 1

2
)q2 . (6.6)

This suggests a mechanism for cancelling off the cosmological constant. Let us

collect all contributions (see Sec. 1), except for the four-form field, in a “bare” cosmo-

logical constant λ. Generically, |λ| should be of order unity (at least in the absence

of supersymmetry), and we will assume without excessive loss of generality that it is

negative. With n units of four-form flux turned on, the full cosmological constant will

11Here and below, I am using reduced Planck units, obtained by replacing G with 8πG in the

definition of all Planck units. This avoids annoying factors of 8π (at the expense of consistency with

earlier sections). In the new units, Λ = ρΛ; Weinberg’s upper bound in Eq. (4.1) is 2 × 10−118; and

the observed value corresponding to Eq. (5.1) is 0.9 × 10−120.
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be given by

Λ = λ +
1

2
n2q2 (6.7)

If n starts out large, the cosmological constant will decay by repeated membrane cre-

ation, until it is close to zero.

Limitations However, we must verify whether Λ gets close enough to zero, i.e.,

whether condition (2) can be satisfied. The smallest value of |Λ| is attained for the

flux nbest, given by the nearest integer to
√

2|λ|/q. The step size near Λ = 0 is thus

given by (nbest − 1
2
)q2. For the Brown-Teitelboim mechanism to produce a value in the

Weinberg window, Eq. (4.1), this step size would need to be of order 10−118 or smaller.

This requires an extremely small membrane charge,

q . 10−118|λ|−1/2 . (6.8)

A natural bare cosmological constant λ will be no smaller than of order 10−64, so

q . 10−86.

Such a small membrane charge q is unnatural. In particular, it is not known how

to realize a sufficiently small charge in string theory. Thus, it is not clear how condition

(2) is to be satisfied. This is the step size problem.

This still looks like progress: Naively, it would seem that we have succeeded in

reducing the cosmological constant problem to a hierarchy problem. All we need is to

introduce a small coupling and stabilize it against corrections. At least in principle,

this is something we know how to do, and perhaps the details can be worked out

later. In fact, however, this example illustrates just how much worse the cosmological

constant problem is. To see this, let us assume the small-charge problem solved and

take Eq. (6.8) to be satisfied.

In this hypothetical model, the Brown-Teitelboim adjustment mechanism would

indeed produce a small cosmological constant, but only in regions containing no matter

and radiation. This is not surprising. Rather general arguments in Sec. 2 showed

that a primordial dynamical adjustment mechanism for Λ can only be as accurate as

the energy density in the early universe, which was much larger than 10−118. Now we

encounter the other side of the same coin: the empty universe problem. We have found

a mechanism which cancels Λ to high precision, but at the price of removing all matter

as well.12

12Steinhardt and Turok [27] consider an extension of another small-step model [23], aiming to

overcome its empty universe problem. Their mechanism requires the universe to pass exponentially

many times through an apparent big crunch/big bang transition, and to do so with negligible integrated

probability of disturbing the small-step field governing the cosmological constant. (These are strong
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In detail the problem shows up as follows.13 Because membrane nucleation is a

slow tunneling process, small values of Λ are approached very gradually from above.

While the universe waits for the next membrane to nucleate, it is dominated by pos-

itive vacuum energy. Hence, it expands at an exponential rate, rapidly diluting the

energy density of any matter or radiation that might have been around. By the time

a membrane appears and the flux is reduced by one unit, the universe is completely

empty. This is true at every step, and so it will be true in particular when the vacuum

energy enters the Weinberg window.

Some energy is liberated when a membrane appears, because the vacuum energy

drops by δΛ. Most of this energy goes into accelerating the membrane as it expands

outward. (This is the famous graceful-exit problem of old inflation.) But let us be

overly optimistic and assume that instead all the energy goes into the production of

new matter and radiation. Unfortunately, we were forced earlier to assume that the

step size is very small: each membrane nucleation decreases the vacuum energy by

δΛ ∼ 10−118 or less, or else our downward cascade would miss the Weinberg window.

With ρ ∼ T 4, this freed-up energy could at best reheat the universe to a temperature

T ∼ 10−30, or about 10−2eV. This falls well short of the 10 MeV necessary to make

assumptions whose validity remains to be demonstrated.) With the additional assumption that the

spacing of values of ρΛ is of order 10−123 (the unsolved step size problem), this model would allow

for the production of hot regions with small cosmological constant. All other vacua, with larger

cosmological constant, will also be produced in different spacetime regions; and every region, in most

of its four-volume, is empty. Thus, anthropic localization in spacetime is necessary in any case to

explain the observed ρΛ. However, small-step single-field models like Refs. [21, 23, 27] differ from a

large-step, multi-field model like the string landscape in that nearly every worldline will experience all

positive values of the cosmological constant, including the smallest one. Steinhardt and Turok argue

that this is a desirable feature: “All other things being equal, a theory that predicts that life can

exist almost everywhere is overwhelmingly preferred by Bayesian analysis (or common sense) over a

theory that predicts it can exist almost nowhere.” At present, other things are far from equal, but I

would not accept this particular criterion even as a tie-breaker. It would suggest that a theory that

predicts a universe densely packed with suns and earths is preferable to one that predicts large voids,

where life cannot exist. Put differently, we have already observed that most patches of space do not

harbor life, so it seems questionable to demand that a good theory predict the opposite. I find it more

reasonable to judge a theory by whether it predicts correctly what observers observe, from economical

and compelling assumptions. Both in the observable universe, and in the multiverse, the dominance

of empty regions is a dynamical consequence of a simple theory. The fact that we do not live in such

a region is not considered a problem, since it is an obvious consequence of the absence of matter.
13The empty universe haunts many other attempts to solve the cosmological constant problem, such

as Ref. [28] and (I would argue in spite of Ref. [29]) even Coleman’s famous wormhole approach [30],

which suffers in any case from technical problems. In these cases it takes on a different guise: the

amplitude of the wavefunction of the universe diverges for empty universes with vanishing cosmological

constant. Anthropic arguments will not help, because the probability for a universe containing only

observers vastly exceeds the probability for the universe we see.
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contact with standard cosmology, a theory we trust at least back to nucleosynthesis.

In summary, the Brown-Teitelboim mechanism, with one four-form field, fails to

satisfy conditions (2) and (5) of Sec. 4.3. The exceedingly small step size required for a

sufficiently dense spectrum (2) cannot be attained in a natural model, and in any case

the associated slow descent would ensure that regions with small cosmological constant

are devoid of matter and radiation (5).

6.2 The discretuum

The above problems can be overcome by considering a theory with more than one

species of four-form field [26]. In Sec. 6.3, I will explain why this situation arises

naturally in string theory. First let us see how multiple four-form fields can produce

a dense “discretuum” without requiring small charges, and how this solves the empty

universe problem.

Multiple four-form fields Consider a theory with J four-form fields. Correspond-

ingly there will be J membrane species, with charges q1, . . . , qJ . Above, I analyzed the

case of a single four-form field; essentially the conclusions still apply to each field sepa-

rately. In particular, each field strength separately will be constant in 3+1 dimensions,

F abcd
(i) = niqiǫ

abcd , (6.9)

and it will contribute a discrete amount of vacuum energy to the stress tensor.

Let us again collect all contributions to vacuum energy, except for those from the

J four-form fields, in a bare cosmological constant λ, which I assume to be negative

but otherwise generic (i.e., of order unity). Then the total cosmological constant will

be given by

Λ = λ +
1

2

J
∑

i=1

n2
i q

2
i . (6.10)

This will include a value in the Weinberg window, Eq. (4.1), if there exists a set of

integers ni such that

2|λ| <
∑

n2
i q

2
i < 2(|λ| + ∆Λ) , (6.11)

where ∆Λ ≈ 10−118.

A nice way to visualize this problem is to consider a J-dimensional grid, with

axes corresponding to the field strengths niqi, as shown in Fig. 2. Every possible

configuration of the four-form fields corresponds to a list of integers ni, and thus to a

discrete grid point. The Weinberg window can be represented as a thin shell of radius
√

2|λ| and width ∆Λ/
√

2|λ|. The shell has volume

Vshell = ΩJ−1(
√

2|λ|)J−1 ∆Λ
√

2|λ|
= ΩJ−1|2λ|

J

2
−1∆Λ , (6.12)
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Figure 2: Possible configurations of the four-form fluxes correspond to discrete points in

a J-dimensional grid, of which a two-dimensional section is shown. The grid spacing in the

i-th direction is the charge qi of the corresponding membrane species. The Weinberg window

corresponds to the thin (green) shell. Inside the shell, Λ < 0; outside Λ > 0. The physically

relevant regime (−1 . Λ . 1) is shown on white background.

where ΩJ−1 = 2πJ/2/Γ(J/2) is the area of a unit J −1 dimensional sphere. The volume

of a grid cell is

Vcell =
J

∏

i=1

qi . (6.13)

There will be at least one value of Λ in the Weinberg window, if Vcell < Vshell, i.e., if

∏J
i=1 qi

ΩJ−1|2λ|
J

2
−1

< |∆Λ| . (6.14)

The most important consequence of this formula is that charges no longer need to

be very small. I will shortly argue that in string theory one naturally expects J to be

in the hundreds. With J = 100, for example, Eq. (6.14) [and thus, condition (2) of

Sec. 4.3] can be satisfied with charges qi of order 10−1.6, or
√

qi ≈ 1/6 (the latter has

mass dimension 1 and so seems an appropriate variable for the judging naturalness of
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this scenario). Interestingly, the large expected value of the bare cosmological constant

is actually welcome: it becomes more difficult to satisfy Eq. (6.14) if |λ| ≪ 1.

As it turns out, the largeness of the charges will also allow condition (5) to be

satisfied in a model with multiple four-form fields: regions with small cosmological

constant can contain matter and radiation.

Dynamics Classically, every flux configuration (n1, . . . , nJ) is stable. But quantum-

mechanically, fluxes can change if a membrane is spontaneously created. As discussed

in Sec. 6.1, this Schwinger-like process is generically exponentially suppressed. Thus,

multiple four-forms naturally give a dense discretuum of metastable vacua which can

have extremely long life-times.

Starting from generic initial conditions, the universe will grow arbitrarily large.

Over time, it will come to contain enormous regions (“bubbles” or “pockets”) corre-

sponding to each metastable vacuum (Fig. 3). In particular, our vacuum will be realized

somewhere in this “multiverse”. Moreover, it can be efficiently reheated, so the empty-

universe problem of Sec. 6.1 will not arise. Let us see how this works in more detail.

time

Figure 3: Bird’s eye view of the universe. The triangles are pocket universes corresponding

to different vacua in the landscape. Each pocket is an infinite, spatially open universe;

the dashed line shows an example of an instant of time as picked out by constant density

hypersurfaces in the pocket.—This is a conformal diagram. The actual amount of physical

time and volume near the top boundary is infinite, and the top boundary is a fractal containing

an infinite number of pocket universes. The black diamond is an example of a spacetime region

that is causally accessible to a single worldline (see Sec. 7).

By Eq. (6.10), all but a finite number of metastable vacua will have Λ > 0. Let

us assume that the universe begins in one of these vacua. Of course, this means that

typically the cosmological constant will be large initially. Since Λ > 0, the universe will
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be well described by de Sitter space. It can be thought of as a homogeneous, isotropic

universe expanding exponentially on a characteristic time scale tΛ ∼ Λ−1/2.

Every once in a long while (this time scale being set by the action of a membrane

instanton, and thus typically much larger than tΛ), a membrane will spontaneously

appear and the cosmological constant will jump by (ni − 1
2
)q2

i . But this does not affect

the whole universe. Λ will have changed only inside the membrane bubble. This region

grows arbitrarily large as the membrane expands at the speed of light.

But crucially, this does not imply that the whole universe is converted into the

new vacuum [31]. This technical result can be understood intuitively. The ambient,

old vacuum is still, in a sense, expanding exponentially fast. The new bubble eats up

the old vacuum as fast as possible, at nearly the speed of light. But this is not fast

enough to compete with the background expansion.

More and more membranes, of up to J different types, will nucleate in different

places in the rapidly expanding old vacuum. Yet, there will always be some of the old

vacuum left. One can show that the bubbles do not “percolate”, i.e., they will never

eat up all of space [32]. Thus different fluxes can change, and different directions in

the J-dimensional flux space are explored.

Inside the new bubbles, the game continues. As long as Λ is still positive, there is

room for everyone, because the background expands exponentially fast. In this way, all

the points in the flux grid (n1, . . . , nJ), are realized as actual regions in physical space.

The cascade comes to an end wherever a bubble is formed with Λ < 0, but this affects

only the interior of that particular bubble (it will undergo a big crunch). Globally, the

cascade continues endlessly (Fig. 3).

Perhaps surprisingly, each bubble interior is an open FRW universe in its own right,

and thus infinite in spatial extent.14 Yet, each bubble is embedded in a bigger universe

(sometimes called “multiverse” or “megaverse”), which is extremely inhomogeneous on

the largest scales.

An important difference to the model with only one four-form is that the vacua will

not be populated in the order of their vacuum energy. Because charges are large, two

neighboring points in flux space will differ enormously in cosmological constant. That

is, they differ by one unit of flux, and the charges qi are not much smaller than one, so

by Eq. (6.10) this translates into an enormous difference in cosmological constant, of

order δΛ ∼ q2 or more. Conversely, vacua with very similar values of the cosmological

14In an open universe, spatial hypersurfaces of constant energy density are three-dimensional hyper-

boloids. This shape is dictated by the symmetries of the instanton describing the membrane nucleation.

It is closely related to the hyperbolic shape of the spacetime paths of accelerating particles, like the

electron-positron pair studied above.
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constant will be well separated in the flux grid, and will not directly decay into one

another.

This feature is crucial for solving the empty universe problem. When our vacuum

was produced in the interior of a new membrane, the cosmological constant may have

decreased by as much as 1/100 of the Planck density. Hence, the temperature before

the jump was enormous (in this example, the Gibbons-Hawking temperature [2] of

the corresponding de Sitter universe would have been of order 1/10 of the Planck

temperature), and only extremely massive fields will have relaxed to their minima.

Most fields will be thermally distributed and can only begin to approach equilibrium

after the jump decreases the vacuum energy to near zero.

Thus, the final jump takes on a role analogous to the big bang in standard cosmol-

ogy. The “universe” (really, just our particular bubble) starts out hot and dense. If

the effective theory in the bubble contains scalar fields with suitable potentials, there

will be a period of slow-roll inflation as their vacuum energy slowly relaxes. (This was

apparently the case in our vacuum.) At the end of this slow-roll inflation process, the

universe reheats.

6.3 String theory

It seems ad hoc to posit the existence of hundreds of species of membranes, though

perhaps a small price to pay for solving the cosmological constant problem. In fact,

however, they arise inevitably when string theory is applied to our four-dimensional

world [26].

Membrane species and extra dimensions The origin of the large number of four-

form fields lies in the topological complexity of small extra dimensions. String theory

is formulated in 9+1 or 10+1 spacetime dimensions. For definiteness, let us work with

the latter formulation (also known as M-theory). If it describes our world, then 7 of the

spatial dimensions must be compactified on a scale that would have eluded our most

careful experiments. Thus one can write the spacetime manifold as a direct product:

M = M3+1 × X7 . (6.15)

Typically, the compact seven-dimensional manifold X7 will have considerable topologi-

cal complexity, in the sense of having large numbers of noncontractable cycles of various

dimensions.

To see what this will mean for the 3+1 dimensional description, consider a string

wrapped around a one-cycle (a “handle”) in the extra dimensions. To a macroscopic

observer this will appear as a point particle, since the handle cannot be resolved. Now,

recall that M-theory contains five-branes, the magnetic charges dual to membranes.
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Like strings on a handle, five-branes can wrap higher-dimensional cycles within the

compact extra dimensions. A five-brane wrapping a three-cycle (a kind of noncon-

tractible three-sphere embedded in the compact manifold) will appear as a two-brane,

i.e., a membrane, to the macroscopic observer.

Six-dimensional manifolds, such as Calabi-Yau geometries, generically have hun-

dreds of different three-cycles, and adding another dimension will only increase this

number. The five-brane—one of a small number of fundamental objects of the theory—

can wrap any of these cycles, giving rise to hundreds of apparently different membrane

species in 3+1 dimensions, and thus, to J ∼ O(100) four-form fields, as required.

The charge qi is determined by the five-brane charge (which is set by the theory to

be of order unity), the volume of X7, and the volume of the i-th three-cycle. The latter

factors can lead to charges that are slightly smaller than 1, which is all that is required.

Note also that the volumes of the three-cycles will generically differ from each other,

so one would expect the qi to be mutually incommensurate. This is important to avoid

degeneracies in Eq. (6.10).

Vacuum stabilization The model I have presented is an oversimplification. When

it was first proposed, it was not yet understood how to stabilize the compact manifold

against deformations (technically, how to give a mass to all moduli fields including the

dilaton). This is clearly necessary in any case if string theory is to describe our world,

since we do not observe massless scalars. But one would expect that in a realistic

compactification, the fluxes wrapped on cycles should deform the compact manifold,

much like a rubber band wrapping a doughnut-shaped balloon. Yet, I have pretended

that X7 stays exactly the same independently of the fluxes ni.

Therefore, Eq. (6.10) will not be correct in a realistic model. The charges qi, and

indeed the bare cosmological constant |λ|, will themselves depend on the integers ni.

Thus the cosmological constant may vary quite unpredictably. But the crucial point

remains unchanged: the number of metastable vacua, N , can be extremely large, and

the discretuum should have a typical spacing ∆Λ ≈ 1/N . For example, if there are 500

three-cycles and each can support up to 9 units of flux, there will be of order N = 10500

metastable configurations. If their vacuum energy is effectively a random variable with

at most the Planck value (|Λ| . 1), then there will be 10380 vacua in the Weinberg

window, Eq. (4.1).

In the meantime, there has been significant progress with stabilizing the compact

geometry (e.g., Refs. [33, 34]; see Refs. [35–37] for reviews.). In particular, Kachru,

Kallosh, Linde, and Trivedi [38] have shown that metastable de Sitter vacua can be

realized in string theory while fixing all moduli. (Constructions in noncritical string

theory were proposed earlier [39, 40].) These results confirmed the above argument
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that the number of flux vacua can be large enough to solve the cosmological constant

problem. More sophisticated counting methods [41] bear out the quantitative estimates

obtained from the simple model I have presented.

7. Outlook: The landscape of string theory

The developments described in the previous section have changed the status of the

cosmological constant problem: we have, at last, a concrete candidate for a solution.

Perhaps it is not the right solution, but its existence makes it less acceptable to ignore

the problem, to fine-tune it away, or to indulge approaches that demonstrably conflict

with experiment.

They have also changed the status of string theory: the theory has made contact

with experiment—not merely in the sense of including a smaller theory such as the

standard model (which, arguably, can be constructed from a suitable compactifica-

tion), but in more exhilarating ways: by being the first theory to explain a mysterious

observation that has long haunted us, and by doing so through means completely its

own. Branes, fluxes, and extra dimensions are inevitable in string theory. They have

turned out to be just what was needed to get the job done.

And they have changed our thinking about how string theory will make other

predictions. There are 10500 or more metastable vacua, which can be thought of as

local minima in a huge, multidimensional potential landscape. They differ not only in

the value of their vacuum energy, but in their entire low-energy effective field theory,

which is determined by local properties near the foot of a valley and thus only very

indirectly by the fundamental building blocks of the landscape. Different vacua will

have different matter content, coupling constants, and forces. We will not predict the

standard model uniquely. We will have to predict many of the features of our universe

statistically, from their relative abundance in the landscape.

But it would be wrong to say that there are now 10500 “string theories”, suggesting

a loss of fundamental simplicity and uniqueness. This is like saying that there are

myriads of standard models. The standard model, like string theory, contains countless

metastable solutions, such as atoms, molecules, and condensed matter at zero tem-

perature. They are all constructed from just five different particle species (electrons,

photons, and quarks). Strictly, the number of possibilities is infinite; even with an en-

ergy or volume cutoff, it quickly exceeds 10500. This is not usually considered a problem

for the standard model.

Rather, a multitude of solutions is an essential feature of any theory capable of

explaining the multitude of complex phenomena that make up the messy, real world.

It does not mean that anything goes. There are only a finite number of elements, and
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a random combination of atoms is unlikely to form a stable molecule. Even quantities

such as material properties ultimately derive from standard model parameters and

cannot be arbitrarily dialed.

The complexity of an object need not be an obstacle to its effective description.

Suppose we set out to derive the properties of metals from the standard model. Looking

at the size of the system, the problem looks daunting, but we know very well that it

yields to the laws of large numbers. Moreover, the predictive power of statistical or

effective theories is completely deterministic in practice.

The large number of vacua in string theory arises in a very similar way, by combin-

ing a small set of fundamental ingredients in different ways. We cannot see the fluxes

wrapped on handles in the extra dimensions, but not long ago the same could be said

about atoms, not to speak of quarks. We do not expect every aspect of a theory to be

testable, we just need to convince ourselves that it gives us more than we put in.

So how do we get predictions from string theory? Getting the cosmological constant

right is nice, but to confirm the landscape, we need more. We cannot create other vacua

in the laboratory [42]. For now, all we can do is measure the properties of our own, and

do what we always do when we compare experiment to theory: see if our observations

are likely (i.e., typical [43]), or unlikely, according to the theory.

This means making statistical predictions. Since we cannot repeat experiments

in cosmology, the most interesting predictions will be those that can be made with

probability extremely close to 1, similar to those in thermodynamics. The problem can

be divided into three tasks, each of which are intensively studied at present.

Landscape statistics What is the relative abundance of stable or long-lived meta-

stable vacua with specified low-energy properties? This is the most obvious question to

ask in pursuit of statistically dominant features (see, e.g., Refs. [41,44–46], or Ref. [47]

for a review). Our understanding of metastable vacua is still rather qualitative, so

many investigations focus on supersymmetric vacua instead, which are under better

control. It will be important to develop more powerful techniques for dealing with

broken supersymmetry; meanwhile, it would help to understand the extent to which

current samples are representative of more realistic vacua.

In particular, it can be useful to proceed by elimination. One would expect that

most Lagrangians that make sense to a low-energy effective field theorist cannot arise

from the limited set of ingredients supplied by string theory, no matter how elabo-

rately they are combined. This vast “swampland” is not encompassed by the string

theory landscape. The challenge is to identify specific predictions that arise from such

limitations [48–50].
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Dynamical selection effects Another major challenge is posed by eternal inflation,

the cosmological dynamics that produces different vacua in large, widely separated

regions of the universe. One would expect that this mechanism favors some vacua over

others, and thus enters into statistical predictions.

Divergences in the global structure of the universe make this effect very difficult to

quantify. As seen in Fig. 3, each vacuum is realized infinitely many times as a bubble

embedded in the global spacetime. Moreover, every bubble is an open universe and

thus of infinite spatial extent.

It would seem natural to regulate these infinities by considering the universe at

finite time before taking a limit. However, there is an ambiguity as to whether one

should compare the volumes, or simply the number of each type of bubble on this

time slice (or some intermediate quantity). Either way, results depend strongly on the

choice of time variable [51, 52], which is rendered ambiguous by the inhomogeneity of

the global spacetime. This is known as the measure problem of eternal inflation.

A small number of relatively simple proposals arise by generating a time variable

from a geodesic congruence [51–57], though the fundamental significance of this proce-

dure is not clear. A more radical proposal [58], motivated by black hole complemen-

tarity, restricts attention to a spacetime region causally accessible to a single worldline

(a “causal diamond”—see Fig. 3). In this case, the global distribution of vacua (which

is unobservable in any case [59]) need not be computed and regulated. Instead, one

computes the relative probability that the worldline will enter a given vacuum. This is

unambiguous and finite.

It is not yet clear how to derive the correct measure from first principles (see

Ref. [60] for an interesting approach). But considerable progress has been made by the

more pedestrian method of elimination. The number of simple candidate measures is

not large, and many make wrong predictions, which go by colorful names such as Q-

catastrophe, youngness paradox, Boltzmann brain paradox, and staggering problem [56,

61–69]. But they just come down to an old-fashioned (and usually violent) conflict with

observation. This has already forced us to abandon or modify (and complicate) some

of the simplest approaches.

Anthropic selection effects Vacua without observers will not contribute to the

statistical ensemble that determines what observations are likely. For example, most

vacua in the landscape have a cosmological constant of order unity. They will be about

one Planck length in size and contain at most a handful of quantum states [70]. Even

without strong assumptions about what observers look like, we can be quite sure that

these vacua will not be observed.

Quantifying this selection effect is a challenging task, for two reasons. First, it
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inevitably leads to the problematic question of what constitutes an observer. Supposing

we can agree on some criterion, we can then ask what a typical observer sees. This

involves tallying observers, or observations, across the whole universe. Each vacuum

bubble is an infinite open universe in itself, so it contains either zero observers or

infinitely many. To define the relative abundance of different observations, a cutoff is

required. This entangles us, once more, in the measure problem discussed earlier.

One possibility is to use one measure to compute only the abundance of vacuum

bubbles, and a separate regularization scheme inside each bubble to define the abun-

dance of observers. An example of the latter is the number of observers per baryon,

or per photon [71–76]. But this quantity seems somewhat arbitrary, and it may not be

well-defined throughout the string landscape, since not all vacua will contain the speci-

fied reference particles. Another strategy is to calibrate a “unit comoving volume” [54],

but it is not clear that this can be rigorously defined.

The problem simplifies if we restrict to vacua that differ from ours only in ρΛ. Then

all of the above schemes are equivalent. Assuming only that observers require galaxies,

they prefer a cosmological constant about three orders of magnitude larger than the

observed value. The agreement improves if more detailed assumptions about observers

are made. It worsens when additional parameters, in particular the primordial density

contrast, are allowed to vary (as seems inevitable in the string landscape) [62, 77, 78].

Another possibility is to use the same measure for counting both vacuum bubbles

and the observers in them. For example, the number of observers in a single causally

connected region is already finite in any vacuum with nonzero cosmological constant, by

Eq. (1.2). (In the string landscape, vacua with ρΛ = 0 have unbroken supersymmetry.

This would seem to preclude any form of condensed matter, and thus, presumably,

observers.)

The causal diamond measure has another, quantitative advantage: the size of the

causally connected region depends on the cosmological constant through Eq. (1.4).

The smaller the cosmological constant, the larger the causally connected region, and

the more complexity it allows. Thus, small values of ρΛ are not just enforced by galaxy

formation. They are favored more generally because they allow more room, and more

time, for observers.

Let us again restrict to the set of vacua identical to ours except for ρΛ, and ask what

probability distribution for ρΛ the causal diamond measure predicts. One finds that

the favored value of ρΛ is that in which vacuum energy comes to dominate the energy

density around the time when most observations are made. This result generalizes

to very different vacua, so the coincidence problem (Sec. 5.3) is actually the primary

problem solved by this measure.

The numerical value of ρΛ then depends on the low energy physics determining the
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epoch of observers. With values larger than of order 10−123, galaxies are expelled from

the horizon before stars and observers form; smaller values are simply less frequent in

the landscape. Thus, the causal diamond predicts a probability distribution for ρΛ that

is in remarkable agreement with the observed value [79].

One would not expect this agreement to worsen when the primordial density con-

trast is allowed to vary as well. Larger density perturbations speed up galaxy formation,

undermining the necessity for small ρΛ. But in the causal diamond measure, galaxy

formation (while still a necessary condition for observers) is no longer the dominant

constraint on ρΛ.

The problem of characterizing observers, especially in vacua very different from

ours, remains challenging. A surprisingly good approximation, in examples studied so

far, is to replace the number of observers by the amount of entropy that is produced by

a given vacuum in the causal diamond, ∆SCD. Whatever observers are, they must obey

the laws of thermodynamics. As they compute, store and retrieve information, they

convert free energy into entropy. Of course, not all entropy is produced by observers.

But ∆SCD can be thought of as an upper bound on the complexity of a spacetime

region. At least on average, it might be proportional to the number of observations

made.

In vacua similar to ours, where we do have ideas about what observers look like,

this Causal Entropic Principle agrees with conventional weighting by the observers

present in the causal diamond [79]. Remarkably, this allows us to explain ρΛ without

even assuming that observers require galaxies. One finds that ∆SCD is dominated

by infrared radiation from dust heated by starlight. Much less entropy would have

been produced in the absence of heavy elements, or stars, or galaxies. Thus, we may

have identified a primitive and universal criterion capable of capturing conditions often

assumed (by hand) as necessary for complex life. The causal diamond and ∆SCD

are well-defined in any vacuum, and it may be possible to estimate them, at least on

average, even in distant regions of the landscape.

Tools like this will be crucial if we want to progress from conditional predictions,

which correlate various features of our own vacuum, to a fundamental understanding

of their origin. In the string landscape, a scale like 10−123 ultimately must arise from

the density of its discretuum and the range of complexity of its particle physics.
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